Differential regulation of multiple brain-derived neurotrophic factor transcripts in the postnatal and adult rat hippocampus during development, and in response to kainate administration.
نویسندگان
چکیده
Brain-derived neurotrophic factor (BDNF) is expressed at high levels in the hippocampus, where it has been implicated in physiological functions such as the modulation of synaptic strength as well as in the pathophysiology of epileptic seizures. BDNF expression is highly regulated and the BDNF gene can generate multiple transcript isoforms by alternate splicing of four 5' exons (exons I-IV) to one 3' exon (exon V). To gain insight into the regulation of different BDNF transcripts in specific hippocampal subfields during postnatal development, exon-specific riboprobes were used. Our data shows that BDNF exon I and exon II mRNAs are regulated in hippocampal subfields during postnatal development, in contrast to BDNF exon III and exon IV mRNA, which remain relatively stable through this period. Further, exons I and II show distinct temporal patterns of expression in the hippocampus: BDNF I mRNA peaks in adulthood in contrast to BDNF II mRNA which peaks at postnatal day 14 (P14). Finally, we have addressed whether kainate treatment in postnatal pups and adults regulates BDNF through the recruitment of the same, or distinct, BDNF promoters. Our data indicates that kainate-induced seizures induce strikingly different expression of distinct BDNF transcripts, both in magnitude as well as spatial patterns in the hippocampal subfields, of pups as compared to adults. These results suggest that kainate-mediated seizures differentially recruit BDNF promoters in the developing postnatal hippocampus in contrast to the adult hippocampus to achieve a hippocampal subfield specific regulation of exon-specific BDNF mRNAs.
منابع مشابه
Differential Effects of Resveratrol on the Expression of Brain-Derived Neurotrophic Factor Transcripts and Protein in the Hippocampus of Rat Brain
Background: The induction of brain-derived neurotrophic factor (BDNF) expression in the hippocampus has shown to play a role in the beneficial effects of resveratrol (RSV) on the learning and memory. The BDNF gene has a complicated structure with eight 5’ noncoding exons (I-IXa), each of which can splice to a common coding exon (IX) to form a functional transcript. Estrogens increase levels of ...
متن کاملThe Pattern of Brain-Derived Neurotrophic Factor Gene Expression in the Hippocampus of Diabetic Rats
Objective(s) The aim of this study was to evaluate the effects of regular exercise in preventing diabetes complication in the hippocampus of streptozotocin (STZ)-induced diabetic rat. Materials and Methods A total of 48 male wistar rats were divided into four groups (control, control exercise, diabetic and diabetic exercise). Diabetes was induced by injection of single dose of STZ. Exercise ...
متن کاملDevelopmental expression of tyrosine kinase b in rat vestibular nuclear neurons responding to horizontal and vertical linear accelerations
Brain-derived neurotrophic factor (BDNF) is known to be crucial for the development of peripheral vestibular neurons. However, the maturation profile of the BDNF signal transducing receptor, tyrosine kinase B (TrkB) in functionally activated otolith-related vestibular nuclear neurons of postnatal rats remains unexplored. In the present study, conscious Sprague-Dawley rats (P4 to adult) were sub...
متن کاملDevelopmental expression of tyrosine kinase b in rat vestibular nuclear neurons responding to horizontal and vertical linear accelerations
Brain-derived neurotrophic factor (BDNF) is known to be crucial for the development of peripheral vestibular neurons. However, the maturation profile of the BDNF signal transducing receptor, tyrosine kinase B (TrkB) in functionally activated otolith-related vestibular nuclear neurons of postnatal rats remains unexplored. In the present study, conscious Sprague-Dawley rats (P4 to adult) were sub...
متن کاملThe effect of 3,4- methylenedioxymethamphetamine on expression of neurotrophic factors in hippocampus of male rats
Background: 3,4- methylenedioxymethamphetamine (MDMA) is a chemical derivative of amphetamine that can induce learning and memory impairment. Due to the effect of neurotrophins on memory and learning, the impact of MDMA was evaluated on the brain - derived neurotrophic factor (BDNF), neurotrophin- 4 (NT-4), and tropomyosin- related kinase B (Trk- β) expression in the hipp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Brain research. Molecular brain research
دوره 130 1-2 شماره
صفحات -
تاریخ انتشار 2004